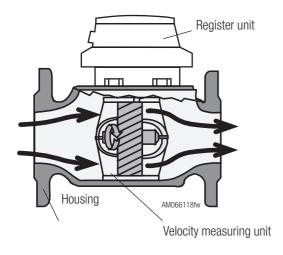


RUBINHot water

Applications

RUBIN hot water meters operate according to the flowrate measuring principle using a Woltman turbine and are designed for high-volume water measurement. The complete modular system covers a wide measuring range in all areas of water supply management or as flow meter or flow sensor for energy measurement systems.

Features


- · High overload capacity
- Symmetrical control for high accuracy in both directions (optional)
- Register unit to IP 68 (protected against continuous immersion)
- The hydrodynamic counter-pressure generated by the special geometry of the WPDH helps to ensure a floating, low-friction turbine bearing

Your benefits

- The register unit can be rotated through 360° to provide the best reading position
- Optional local and/or remote display
- The hermetically encapsulated roller counter can be retrofitted with up to 3 pulsers without destroying seals
- The measuring units can be removed and certified

Parts and materials

RUBIN WPDH

Part	Material						
Housing assembly							
Housing Velocity measuring unit screws	GG 25 stainless steel						

Velocity measuring unit assembly

Complete turbine

Turbine PPS
Cap jewel sapphire
Bearing bushing for turbine PPS

Complete regulating device

Regulating ring PPS
Push rod stainless steel
Regulating bolt brass
O-ring for regulating bolt EPDM
Locking screw brass

Complete velocity measuring unit body

Head seal EPDM
Cover flange tinned brass
Basic body of unit PPS
Moulded seal EPDM
Protecting tube PPS

Bearing ring stainless steel

Bearing bushing for transmission shaft PPS

Transmission shaft PPS/stainless steel

Gear wheel for transmission shaft PPS

Magnetic coupling PPS/hard ferrite

Water flow stabiliser PPS

Bearing bolt stainless steel Baffle plate PPS

Register unit assembly

Circular gasket, lip seal EPDM
Filler plug, centring ring, conversion ring PPO
Sealing plate brass
Sealing plug PPS
Sliding ring PC

Mechanismglass/copperNameplatePV filmCoverPOM

Explanation of abbreviations

GG Grey cast iron
PPS Polyphenylene sulphide
PPO Polyphenylene oxide
POM Polymethylene oxide
PA Polyamide

PC Polycarbonate

EPDM Ethylene/propylene diene rubber

PV Plyvinyl

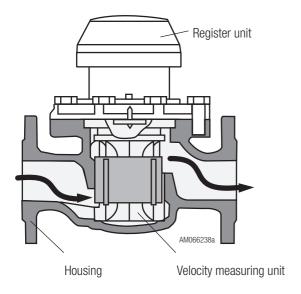
RUBIN WSDH

Part	Material	
Housing assembly		
Housing Velocity measuring unit screws	GG 25 stainless steel	
Velocity measuring unit assemb	oly	
Complete turbine		
Turbine / turbine shaft Pin Washer, bushing Bearing plate and locating ring Bearing sleeve, clip Magnet	PPS hard metal stainless steel sapphire brass hard ferrite	
Complete regulating device Regulating vane Push rod, threaded pin, bolts O-ring	PPS stainless steel EPDM	
Complete velocity measuring ur	nit body	
Base pin, washer, hexagonal nut Pin Upper section of unit Lower section of unit Bushing	stainless steel hard metal PPS PPS stainless steel	
Register unit assembly		
Circular gasket, lip seal Filler plug, centring ring, conversion Sealing plate Sealing plug Sliding ring Mechanism	EPDM ring PPO brass PPS PC glass/copper	
Nameplate	PV film	

POM

Cover

Explanation of abbreviations


Grey cast iron GG Polyphenylene sulphide Polyphenylene oxide Polymethylene oxide Polycarbonate PPS PP0 POM

PC

EPDM Ethylene/propylene diene rubber

PV Polyvinyl

RUBIN SMQ

Explanation	of	abbreviations

GS	Cast steel

PPS Polyphenylene sulphide
PC Polycarbonate
PEEK Polyetheretherketone
Novapress Aramide rubber

Part	Material
Housing assembly	
Housing Velocity measuring unit screws	GS stainless steel

Velocity measuring unit assembly

Complete turbine

Turbine PEEK
Bearing bushing sapphire
Bearing pin hard metal
Magnet ferrite

Complete velocity measuring unit body

Velocity measuring unit
Clips stainless steel
Regulating unit PEEK/stainless steel
Sealing plate stainless steel
Flat seal Novapress

Register unit assembly

Transmission gear wheels PPS Bottom plate of mechanism PPS

Bearings sapphire/PPS

Upper housing of mechanism PPS
Numbered roller indicators, gear wheels PPS
Cover PC

Range

RUBIN WPDH

- Woltman turbine meters with dry-type register units, IP 68
- Approvals:
 - 79/830/EWG classe B (better than EN 1434 classe2)
 - Swiss domestic approval ZW115 (flow sensor), measurement error limits according to OIML R75
 - Swiss domestic approval 310 (hot water meter), measurement error limits according to OIML R72
- For horizontal or vertical installation; a length of straight pipework of 3 x DN is recommended upstream of the meter
- Powder-coated grey cast iron housing with flange connections
- Flanges according to EN1092, PN 16
- Max. temperature: 130 °C

Nominal size		DN	mm	40	50	65	80	100	125	150	200	250	300 ²⁾
			inches	1 1/2	2	2 1/2	3	4	5	6	8	10	12
Article No.				92483	92493	92494	92495	92496	92497	92498	92524	180536	180536
Maximum flowrate	(± 2 %)	Qmax 1)	m³/h	20	30	60	90	140	200	300	500	1000	1200
Nominal flow	(± 2 %)	Qn	m³/h	10	15	25	45	70	100	150	250	500	600
Transitional flowrate	(± 2 %)	Qt	m³/h	1.8	1.8	2	3.2	4.8	8	12	20	45	50
Minimum flowrate	(± 5 %)	Qmin	m³/h	0.6	0.6	1.0	1.4	2.0	3.5	4.5	8	20	25
Starting flow at approx			m³/h	0.25	0.25	0.3	0.35	0.6	1.1	1.7	2.0	10	15
According to EEC typ	oe appr	oval class	s B ³⁾										
Maximum flowrate	(± 3 %)	Qmax	m³/h	-	30	50	80	120	200	300	500	800	1200
Nominal flowrate	(± 3 %)	Qn	m³/h	-	15	25	40	60	100	150	250	400	600
Transitional flowrate	(± 3 %)	Qt	m³/h	-	2.25	3.75	6	9	15	22.5	37.5	60	90
Minimum flowrate	(± 5 %)	Qmin	m³/h	-	0.6	1	1.6	2.4	4	6	10	16	24
Flowrate at $\Delta p = 1$ bar		Q	m³/h	82	94	101	330	460	570	1050	2500	6200	11200
Pressure loss at Qn		∆ p (Qn)	bar	0.032	0.018	0.02	0.025	0.03	0.05	0.02	0.03	0.008	0.016
Weight		approx. k	g	7.5	8	10	14	18	21	36	51	72	99
		Overall	L	220	200	200	225	250	250	300	350	450	500
		length	h	69	73	85	95	105	118	135	162	194	226
			Н	120	120	120	150	150	160	177	206	231	256
			g	200	200	200	270	270	280	356	441	466	491
 		Outer dia	meter	150	165	185	200	220	250	285	340	405	460
		Bolt circle	e diameter	110	125	145	160	180	210	240	295	355	410
L ————————————————————————————————————		Diameter	of holes	4x18	4x18	4x18	8x18	8x18	8x18	8x22	12x22	12x26	12x26

During a maximum total of 24 h
 Supplied on request
 EEC type approval of model: D22.16 96.01 class B; the values shown are those taken from the official verifications

Reed pulsers	RD 02/F	RD 022									
Pulse value (low)	l/pulse	100	100	100	100	100	100	1000	1000	1000	1000
Pulse frequency at Qmax	Hz	0.055	0.083	0.167	0.250	0.389	0.556	0.083	0.139	0.278	0.333
Pulse value (high)	l/pulse	250	250	250	250	250	250	2500	2500	2500	2500
Pulse frequency at Qmax	Hz	0.011	0.033	0.067	0.100	0.156	0.222	0.033	0.056	0.111	0.133
Optoelectronic pulsers	OD AM										
Pulse value	l/pulse	1	1	1	1	1	1	10	10	10	10
Pulse frequency at Qmax	Hz	5.555	8.333	16.67	25.00	38.89	55.56	8.333	13.89	27.78	33.33
Pulse frequency at Qmin	Hz	0.167	0.167	0.278	0.389	0.556	0.972	0.125	0.222	0.694	0.833
	OD 04										
Pulse value	l/pulse	10	10	10	10	10	10	100	100	100	100
Pulse frequency at Qmax	Hz	0.017	0.833	1.667	2.500	3.889	5.556	0.833	1.389	2.778	3.333
Pulse frequency at Qmin	Hz	0.555	0.017	0.028	0.039	0.056	0.097	0.013	0.022	0.069	0.083

RUBIN WSDH

- Woltman turbine meters with dry-type register units, IP68
- Approvals:
 - 79/830/EWG classe A (better than EN 1434 classe2)
 - Swiss domestic approval ZW115 (flow sensor), measurement error limits according
 - Swiss domestic approval 310 (hot water meter), measurement error limits according to OIML R72
- For horizontal installation; a length of straight pipework of 3 x DN is recommended up stream of the meter
- Powder-coated grey cast iron housing with flange connections
- Flanges according to EN1092, PN 16
- Max. temperature: 130 °C

Nominal size		DN	mm	50	65	80	100	150
			inches	2	2 1/2	3	4	6
Article No.				92379	92380	92381	92382	180529
Maximum flowrate	(± 2 %)	Qmax 1)	m³/h	30	60	85	125	300
Nominal flow	(± 2 %)	Qn	m³/h	15	25	40	60	150
Transitional flowrate	(± 2 %)	Qt	m³/h	1.5	2.5	2.5	4	12
Minimum flowrate	(± 5 %)	Qmin	m³/h	0.25	0.30	0.30	0.50	0.80
Starting flow at approx	Κ.		m³/h	0.06	0.07	0.1	0.15	0.5
According to EEC ty	pe appr	oval clas	s A ²⁾					
Maximum flowrate	(± 3 %)	Qmax	m³/h	30	50	80	120	300
Nominal flowrate	(± 3 %)	Qn	m³/h	15	25	40	60	150
Transitional flowrate	(± 3 %)	Qt	m³/h	3	5	8	12	30
Minimum flowrate	(± 5 %)	Qmin	m³/h	1.2	2	3.2	4.8	12
Flowrate at $\Delta p = 1$ ba	r	Q	m³/h	60	98	138	195	400
Pressure loss at Qn		∆ p (Qn)	bar	0.065	0.068	0.09	0.102	0.18
Weight		approx. k	g	14	18	20	33	92
-	<u>†</u>	Overall	L	270	300	300	360	500
_		length	h	80	100	100	115	180
	<u>6</u>		Н	171	171	171	211	311
ת לׄבווים תיים ו			g	291	311	311	381	581
		Outer dia	meter	165	185	200	220	285
	. 95	Bolt circle	e diameter	125	145	160	180	240
	AM066125b	Diameter	of holes	4x18	4x18	8x18	8x18	8x22

¹⁾ During a maximum total of a few minutes 2) EEC type approval of model: D22.16 96.03 class A; the values shown are those taken from the official verifications

Reed pulsers	RD 02 / RD	022				
Pulse value (low)	l/pulse	100	100	100	100	1000
Pulse frequency at Qmax	Hz	0.083	0.167	0.236	0.347	0.083
Pulse value (high)	l/pulse	250	250	250	250	2500
Pulse frequency at Qmax	Hz	0.033	0.067	0.094	0.139	0.033
Optoelectronic pulsers	OD AM					
Pulse value	l/pulse	1	1	1	1	10
Pulse frequency at Qmax	Hz	8.333	16.67	23.61	34.72	8.33
Pulse frequency at Qmin	Hz	0.069	0.083	0.083	0.139	0.022
	OD 04					
Pulse value	l/pulse	10	10	10	10	100
Pulse frequency at Qmax	Hz	0.833	1.667	2.361	3.472	0.833
Pulse frequency at Qmin	Hz	0.007	0.008	0.008	0.014	0.002

Pressure loss curves

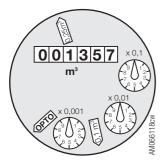
(see page 14)

RUBIN SMQ

- Woltman turbine meters with dry-type register unit
- Approvals:
 - Better than metrological cl. A acc. to the directive 79/830/EWG or cl. 2 acc. to EN1434 $\,$
 - Swiss domestic approval ZW115 (flow sensor), measurement error limits according to OIML R75
 - Swiss domestic approval 310 (hot water meter), measurement error limits according to OIML R72
- For horizontal installation; a length of straight pipework of 3 x DN is recommended up stream of the meter
- Powder-coated cast iron housing with flange connections
- Flanges according to EN1092, PN 40
- Max. temperature: 200 °C

Nominal size		DN	mm	50	80	100	
			inches	2	3	4	
Article No.				92490	92491	92492	
Maximum flowrate	(± 2 %)	Qmax 1)	m³/h	25	70	100	
Nominal flow	(± 2 %)	Qn	m³/h	15	40	60	
Transitional flowrate	(± 2 %)	Qt	m³/h	2.25	6	9	
Minimum flowrate	(± 5 %)	Qmin	m³/h	0.7	1.6	2.4	
Starting flow at approx	۲.		m³/h	0.25	0.35	0.4	
According to EEC ty	pe appr	oval clas	s A				
Maximum flowrate	(± 3 %)	Qmax	m³/h	25	70	100	
Nominal flowrate	(± 3 %)	Qn	m³/h	15	40	60	
Transitional flowrate	(± 3 %)	Qt	m³/h	2.25	6	9	
Minimum flowrate	(± 5 %)	Qmin	m³/h	0.6	1.6	2.4	
Flowrate at ∆ p = 1bai	r	Q	m³/h	60	138	195	
Pressure loss at Qn		∆ p (Qn)	bar	0.065	0.09	0.102	
Weight		approx. k	g	19.7	27.6	52.7	
	1	Overall le	ngth				
	-		L	270	300	360	
	6		h	80	100	110	
	<u> </u>		Н	195	205	235	
			g	325	345	385	
-	. ¥ - ¥	Outer dia	meter	165	200	235	
	4M066238	Bolt circle	e diameter	125	160	190	
	AM06	Diameter	of holes	4x18	8x18	8x22	

¹⁾ During a maximum total of a few minutes


Reed pulsers	K 02			
Pulse value (low)	l/pulse	100	100	100
Pulse frequency at Qmax	Hz	0.069	0.194	0.278
Pulse value (high)	l/pulse	250	250	250
Pulse frequency at Qmax	Hz	0.028	0.078	0.111
Induktive pulsers	K 05			
Pulse value	l/pulse	10	10	10
Pulse frequency at Qmax	Hz	0.694	1.944	2.778
Pulse frequency at Qmin	Hz	0.017	0.044	0.067
	K 06			
Pulse value	l/pulse	1	1	1
Pulse frequency at Qmax	Hz	6.944	19.444	27.778
Pulse frequency at Qmin	Hz	0.167	0.444	0.667

Pressure loss curves

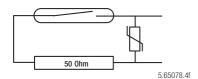
(see page 15)

Roller counters

WPDH 40...125 and WSDH 50...100

WPDH 150...300 and WSDH 150

SMQ 50...100

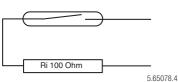


Pulsers

WPDH and **WSDH**

The Reed and optoelectric pulsers can be retrofitted without destroying the seals. The Reed pulser can be installed in two positions with different pulse values as indicated on the dial.

Reed pulsers RD 02


- Switch type
- Reed contact tube protected with an inert gas filling; plug-in design

Contact protection

- RD 02: with protective resistor (50 Ω) and varistor
- Switch voltage
- RD 022: with protective resistor (100 Ω) • RD 02: max. 48 VAC or DC
- RD 022: max. 125 VAC or DC
- Switch current
- RD 02: max, 200 mA • RD 022: max. 35 mA
- Quiescent current
- Contact open
- RD 02: max. 4 W
- Switch power

- RD 022: max. 2 W
- Pulse duration
- independent of the flowrate; continuous contact is possible
- Ambient temperature
- -10 ... +70 °C • IP 68 to IEC 144
- Protection class Connection
- Fixed mounting cable, length: 3 m
- Article No. RD 02 Article No. RD 022
- 93748
- 93749

RD 022 Reed pulser

Optoelectronic pulsers OD AM and OD 04

Switch

• IR reflex light barrier to DIN 19234, plug-in design

Switch voltage Switch current

Quiescent current Forward/reverse flow

• 8.2 VDC • <1.2 mA

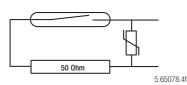
• >2.1 mA

• This is integrated in OD 04 by means of an additional current recognition threshold at 1.5 mA

• OD AM has an integrated forward/reverse flow recognition feature and it only emits forward flow pulses (jitter surppression)

Ambient temperature Protection class

Connection Article No. OD AM Article No. OD 04


• -10 ... +70 °C • IP 68 to IEC 144

• Fixed mounting cable, length: 3 m

• 93751 • 93753

SMQ

Reed pulsers K02

Switch

Contact protection Switch voltage Switch current Quiescent current Switch power Pulse duration

• Reed switch with plug-in design

with protective resistor and varistor

• max. 48 VAC or DC

• max. 200 mA

Contact open

• max. 4 W

• depends on flowrate; continuous contact is possible

• -10 ... +60 °C • IP 66 to IEC 144 • Cable, length: 2.5 m

• 100 litres / 250 litres (2 installation positions)

• 93715

Ambient temperature Protection class Connection

Pulse values Article No.

Inductive pulsers K05/K06

Switch

• HF inductive control head to DIN 19234, as slot proximity switch for a plug-in socket (easy to change)

Switch voltage Power consumption • 8 VDC

• gap open ≥ 3 mA (internal resistance ≈ 1 k Ω)

• gap closed ≤ 1 mA (internal resistance ≈ 7 k Ω) Changes in the internal resistance are used to control auxiliary transistor relays.

Pulse duration Ambient temperature

Protection class Connection Polarity

Article No. K05 Article No. K06 • depends on flow, continuous contact is possible

• -10 ... +60 °C • IP 54 to IEC 144

• Cable, length: 2.5 m

• Brown lead (+) / blue lead (-) to EN 50044

• 93722 • 93754

Applications for WPDH and WSDH

Reed pulsers RD 02 / RD 022 (passive)

- Remote transmission, remote display
- Input signal for control and management systems
- Data logging
- As a pulser for the flow sensor of heat measuring points
- Input signal for the AMBUS® IS module with M-Bus output signal

Optoelectronic pulser OD AM (small pulse value)

- As a pulser for the flow sensor of heat measuring points where maximum accuracy is required
- Standard application for all heat measuring points with calculating units and NAMUR-compatible pulse inputs
- To form instantaneous values
- For cooling measurements
- For automatic correction of pulses due to hydraulic oscillations (jitter)

Optoelectronic pulser OD 04 (large pulse value)

- As a pulser for the flow sensor of heat measuring points
- Suitable for auxiliary devices which, by means of an integrated forward/reverse flow detector, can generate the correct volume total
 when the direction of flow changes

Applications for SMQ

Reed pulsers K 02 (passive)

- · Remote transmission, remote display
- · Input signal for control and management systems
- Data logging
- As a pulser for the flow sensor of heat measuring points
- Input signal for the AMBUS® IS module with M-Bus output signal

Inductive pulsers K 06 (small pulse value)

- As a pulser for the flow sensor of heat measuring points where maximum accuracy is required
- Standard application for all heat measuring points with calculating units and NAMUR-compatible pulse inputs
- To form instantaneous values
- For cooling measurements

Inductive pulsers K 05 (large pulse value)

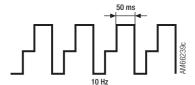
- As a pulser for the flow sensor of heat measuring points
- Application for all heat measuring points with calculating units and NAMUR-compatible pulse inputs

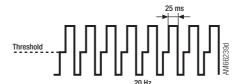
Activation, selection and evaluation

Power supply for pulsers

All pulsers require some form of activating device. The optoelectronic (OD) and inductive pulsers (K05 / K06) are powered by the heat calculating unit or by means of a suitable frequency converter.

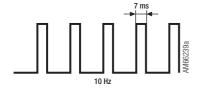
For remote totalization or display of the measured volume flow, passive (Reed) pulsers are also available (RD,K02). The pulser must be supplied with voltage from an auxiliary device. In the case of passive pulsers, battery-powered devices are another possibility.

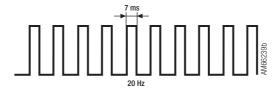

Choice of a suitable pulser


The choice of a suitable pulser and of an adequate pulse value depends on the application. For instantaneous flow values, analogue signals and for use as a flow sensor for heat energy totalizers, pulsers with small pulse values should generally be selected (such as the OD AM optoelectronic pulser or the K06 inductive pulser with pulse values of 1 litre). For remote totalization, large pulse values are usually preferable (for example, Reed RD 02 pulser with a pulse value of 250 litres up to DN 125). For evaluation devices powered by battery, it is only possible to use Reed pulsers.

Requirements of the activating devices

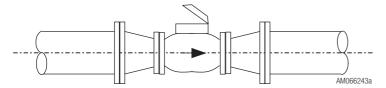
With most pulsers, the duration of the pulse depends on the flowrate (except for OD AM pulsers). In these cases continuous contact may occur if there is zero flow. For this reason, the activating device must be able to tolerate a continuous load; if this is not the case, provision should be made for a protective device.


Example: with the OD 04 pulser, the pulse length depends on the flowrate since the active / passive ratio is always the same. During forward flow the rising flank of the pulse features an additional current threshold or step at 1.5 mA. During reverse flow, the current threshold is located on the falling flank of the pulse.



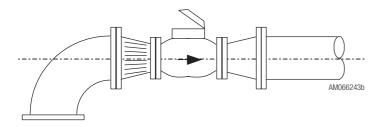
Correct pulse evaluation

When the flow is interrupted, oscillations of the liquid column may occur in the installation (hydraulic vibration with slightly alternating forward / reverse flows, known as jitter). This may give rise to pulses which will be exclusively registered as forward flow by the auxiliary device. Pulses of this sort are not disruptive as regards forming the instantaneous value, since the frequency is very low. However, when a metering function is being controlled with the pulser (as is the case with all heat metering points), the OD AM optoelectronic pulser should be selected as it can filter out the pulses generated by the forward / reverse fluctuations with the help of suitable electronic circuitry. The pulse width of the OD AM pulser is always constant. It is based on the maximum frequency of approximately 70 Hz, corresponding to about 7 ms for all pulse frequencies. Rising and falling pulse flanks are always identical, and no reverse flow pulses are emitted.

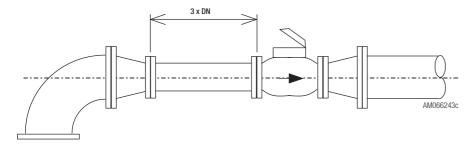

Note

When using the OD AM pulser in conjunction with the CALEC® calculating unit, it is important to remember that the bounce filter (normally used for passive Reed pulsers) must not be set when programming this unit. The NAMUR 200 Hz input on the calculating unit must be used.

Installation notes


Nominal sizes: pipes, meters and pipe reducers

The choice of the nominal meter size should not automatically be based on the nominal size of the pipe. The decisive factor is the highest flowrate that occurs continuously in the pipe - this determines the nominal flowrate Qn of the meter.


Pipe bends and flow straighteners

The flow profile is modified by the pipe bend to such an extent that it alters the incoming flow to the meter turbine. As a result, measuring accuracy is impaired which can be prevented by suitable constructural precautions. For these purposes, flow straighteners which regularize the profile can be used, these being installed directly downstream of the pipe bend. If there is enough space, additional "smoothing" sections should be added. Flow straighteners also exist in combination with pipe reducers.

Inlet and outlet sections

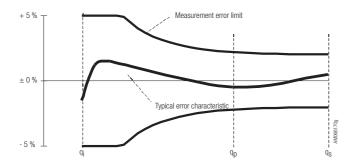
Woltman meters attain maximum accuracy if adequate inlet and outlet sections are included in the design of the measuring point. The inlet section should be at least 3 x DN or a flow straightener should otherwise be installed. The requirements for the outlet section are less strict since the only essential requirement is to avoid abrupt changes of cross-section directly after the meter.

Mounting height

RUBIN Woltman meters have exchangeable velocity measuring units which can be tested and calibrated independently of the housing. For this purpose, the old units are removed upwards. When designing the installation, it is important to ensure that there is adequate space above the meter for removal.

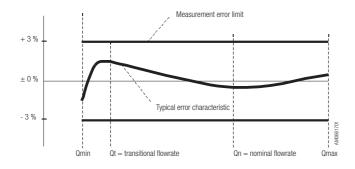
Installation position / vertical pipes

Note: with vertical pipes, you must always use a RUBIN Woltman meter of type WPDH (but if a WSDH has to be fitted specific to the installation, we would remind you that the metrological approval requirements will not be satisfied with the meter installed in this position). Meters must not be installed upside-down as then the metrological approval requirements will not be met.

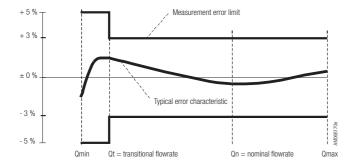

Electrical installation

Electrical cables and installation must be carried out by a specialist in accordance with legal requirements.

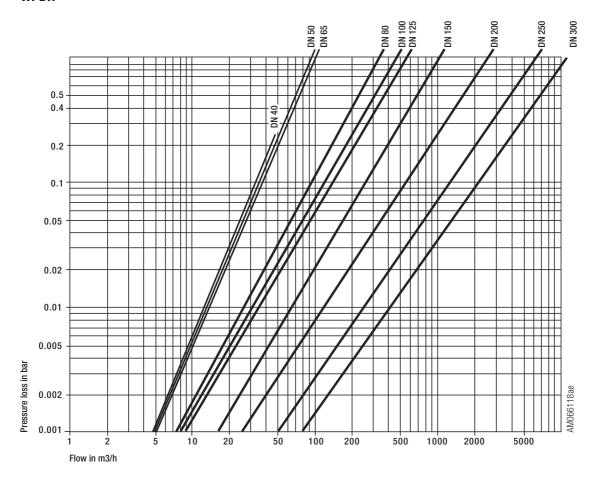
Measurement error limits


Measurement error limits according to EN 1434 for flow sensors

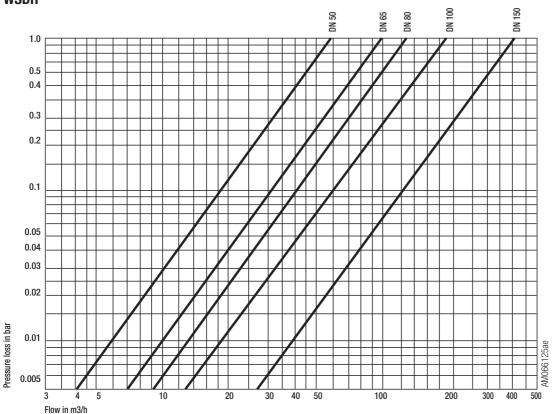
Measurement error limits for the flow sensor part of a heat meter


Measurement error limits according to OIML R72 and R75 Standards for flow sensors (Qn >3 m³/h)

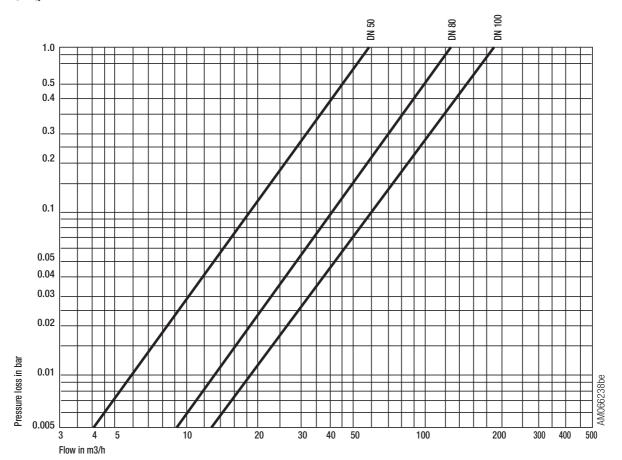
Measurement error limits for the flow sensor part of a heat meter where $Qn > 3 m^3/h$


Measurement error limits according to OIML R72 Standards and to Directive 79/830/EEC for hot water meters

Measurement error limits for hot water meters according to OIML R72 as defined by the 79/830/EEC Directive.



Pressure loss curves


WPDH

SMQ

A0 - 06.2009 - Art. Nr. 11732

DISTRIBUTOR:

HEAD OFFICE:

AQUAMETRO AG
Ringstrasse 75
CH-4106 Therwil
Phone +41 61 725 11 22
Fax +41 61 725 15 95
info@aquametro.com

